资源类型

期刊论文 55

年份

2023 8

2022 6

2021 2

2020 1

2019 5

2018 4

2017 2

2016 4

2014 3

2013 2

2012 2

2011 4

2010 2

2009 1

2008 2

2007 3

2001 1

展开 ︾

关键词

聚乙烯 3

ANSYS 1

K型钢管混凝土节点 1

S—N曲线 1

T形节点 1

三峡工程 1

共热解 1

分子链取向 1

升船机 1

可持续性 1

回收机理 1

地下结构接缝 1

废弃PET 1

废弃轮胎橡胶 1

操作优化 1

施工缝 1

木聚糖 1

木质素 1

本体 1

展开 ︾

检索范围:

排序: 展示方式:

Investigating peak stresses in fitting and repair patches of buried polyethylene gas pipes

Reza KHADEMI ZAHEDI, Pouyan ALIMOURI, Hooman KHADEMI ZAHEDI, Mohammad SHISHESAZ

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 147-168 doi: 10.1007/s11709-019-0587-6

摘要: Nowadays, polyethylene composes a large number of natural gas distribution pipelines installed under the ground. The focus of the present contribution is two fold. One of the objectives is to investigate the applicability of polyethylene fittings in joining polyethylene gas pipes which are electrofused onto the pipe ends and buried under the ground, by estimating stress distribution using finite element method. The second objective is to study the effectiveness of polyethylene repair patches which are used to mend the defected pipelines by performing a finite element analysis to calculate peak stress values. Buried polyethylene pipelines in the natural gas industry, can be imposed by sever loadings including the soil-structure interaction, traffic load, soil’s column weight, internal pressure, and thermal loads resulting from daily and/or seasonal temperature changes. Additionally, due to the application of pipe joints, and repair patches local stresses superimposed on the aforementioned loading effects. The pipe is assumed to be made of PE80 resin and its jointing socket, and the repair patch is PE100 material. The computational analysis of stresses and the computer simulations are performed using ANSYS commercial software. According to the results, the peak stress values take place in the middle of the fitting and at its internal surface. The maximum stress values in fitting and pipe are below the allowable stresses which shows the proper use of introduced fitting is applicable even in hot climate areas of Ahvaz, Iran. Although the buried pipe is imposed to the maximum values of stresses, the PE100 socket is more sensitive to a temperature drop. Furthermore, all four studied patch arrangements show significant reinforcing effects on the defected section of the buried PE gas pipe to transfer applied loads. Meanwhile, the defected buried medium density polyethylene gas pipe and its saddle fused patch can resist the imposed mechanical and thermal loads of 22°C temperature increase. Moreover, increasing the saddle fusion patch length to 12 inches reduces the maximum stress values in the pipe, significantly.

关键词: Ansys software     polyethylene     buried pipelines     polyethylene joints     polyethylene patches     peak von Mises stress     soil-pipe interaction     temperature variation    

Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites

《能源前沿(英文)》   页码 763-774 doi: 10.1007/s11708-023-0897-1

摘要: Plastic waste is causing serious environmental problems. Developing efficient, cheap and stable catalytic routes to convert plastic waste into valuable products is of great importance for sustainable development, but remains to be a challenging task. Zeolites are cheap and stable, but they are usually not efficient for plastic conversion at a low temperature. Herein a series of microporous and mesoporous zeolites were used to study the influence of porosity and acidity of zeolite on catalytic activity for plastics conversion. It was observed that H-Beta zeolite was an efficient catalyst for cracking high-density polyethylene to gasoline at 240 °C, and the products were almost C4–C12 alkanes. The effect of porosity and acidity on catalytic performance of zeolites was evaluated, which clearly visualized the good performance of H-Beta due to high surface area, large channel system, large amount accessible acidic sites. This study provides very useful information for designing zeolites for efficient conversion of plastics.

关键词: plastics conversion     polyethylene     zeolites     acidity     porosity    

聚乙烯类废塑料制聚乙烯蜡技术进展

王璇,冀星,李术元

《中国工程科学》 2001年 第3卷 第12期   页码 90-95

摘要:

废旧塑料的回收利用是近年来治理环境污染的一个重要课题。废聚乙烯(PE)在塑料垃圾中占有很大的比例,如何对其进行合理的回收、利用已成为人们十分关心的问题。从理论和经济两方面分析了废聚乙烯裂解制取聚乙烯蜡技术的可行性,介绍了聚乙烯蜡的性能及市场情况,分析比较了几种有代表性的制蜡工艺,综合评价了这些工艺技术的应用范围和优缺点。还简要介绍了红外脱油技术,并对该技术的研究和应用方向提出了一些建议。

关键词: 聚乙烯类废塑料     热解     聚乙烯蜡    

Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption

Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 575-585 doi: 10.1007/s11705-017-1650-2

摘要: Novel modified activated carbons (ACs) with enhanced adsorptive properties were obtained coating by chitosan (CS), polyethylene glycol (PEG) and blends of the two polymers (0:1, 1:0, 1:1, 1:2 and 2:1 wt/wt) on ACs by an impregnation technique. The adsorption performances of the pristine, acidified and polymer-impregnated ACs were studied using methylene blue as a model adsorbate. The adsorbents were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and abrasion hardness tests. The average coating thicknesses were between 10 to 23 microns. The pore sizes, pore densities and pore capacities of the activated carbons increased as the wt-% PEG in the coating increased. The highest adsorption capacity (424.7 mg/g) was obtained for the chitosan-coated ACs and this adsorption was well described by the Langmuir isotherm model. The kinetic results were best described by the pseudo-second-order kinetic model. The highest rate constant was obtained with the ACs modified with the CS:PEG (2:1) coating and this result was almost 2.6 times greater than that of the unmodified ACs. The CS/PEG impregnated ACs also displayed superior hardness (~90%), compared to unmodified ACs (~85%). Overall the chitosan had a greater effect on improving adsorption capacity whereas the polyethylene glycol enhanced the adsorption rate.

关键词: carbon biocomposites     impregnation     chitosan     polyethylene glycol     image processing    

Conceptual design of compliant translational joints for high-precision applications

Guangbo HAO,Haiyang LI,Xiuyun HE,Xianwen KONG

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 331-343 doi: 10.1007/s11465-014-0321-y

摘要:

Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper deals with the conceptual design of CTJs via three approaches: parallelogram based method, straight-line motion mechanism based method and combination based method. Typical emerging CTJ designs are reviewed by explaining their design principles and qualitatively analyzing their characteristics. New CTJs are proposed using three approaches, including an asymmetric double parallelogram mechanism with slaving mechanism, several compact and symmetric double parallelogram mechanisms with slaving mechanisms and a general CTJ using the center drift compensation and a CTJ using Roberts linkage and several combination designs. This paper provides an overview of the current advances/progresses of CTJ designs and lays the foundation for further optimization, quantitative analysis and characteristic comparisons.

关键词: compliant mechanisms     translational joints     conceptual design     parallelogram     straight-line motion     combination method    

terephthalate)/ethylene propylene diene monomer copolymer grafted with maleic anhydride/metallocene polyethylene

RUN Mingtao, SONG Hongzan, WANG Yingjin, YAO Chenguang, GAO Jungang

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 238-245 doi: 10.1007/s11705-007-0043-3

摘要: The rheological, phase morphologic, thermal and mechanical properties of poly(trimethylene terephthalate)/metallocene polyethylene (PTT/mPE) blends in the presence of ethylene propylene diene monomer copolymer grafted with maleic anhydride (EPDM--MAH) as compatibilizer are studied by means of a capillary rheometer, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). Results suggest that the compatibility of PTT/mPE blends is improved greatly after the addition of a compatibilizer. The radius of the dispersed phase in the system decreases greatly when the compatibilizer is added into the blend. When the amount of compatibilizer exceeds 8 wt-%, the size of dispersed phase becomes larger again. This phenomena could be attributed to the higher viscosity of the EPDM--MAH phase, which is dispersed more difficulty in the PTT phase of lower viscosity, thus the mixing efficiency is apparently decreased during the melt blending process. Moreover, the melt viscosity of the blend reaches the maximal value in case of 4 wt-% compatibilizer content, above which it would decrease again. This result is associated with the generation of more and bigger dispersed phase inside the bulk phase, thus the grafting efficiency at the interface is decreased, which could result in lower viscosity. The DSC results suggest that the mPE component shows a nucleating effect, and could increase the overall degree and rate of PTT crystallization, while the addition of a compatibilizer might slightly diminish these effects. In addition, the blend with 4 wt-% compatibilizer shows the best thermal stability. Furthermore, the Izod impact strength and the tensile strength at room temperature of the blend are also markedly improved by the addition of a 4 8 wt-% compatibilizer.

关键词: /metallocene polyethylene     presence     rheological     phenomena     trimethylene terephthalate    

A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

Jinyang ZHENG, Yue ZHANG, Dongsheng HOU, Yinkang QIN, Weican GUO, Chuck ZHANG, Jianfeng SHI

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 535-545 doi: 10.1007/s11465-018-0515-9

摘要:

Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summa-rized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection techno-logy. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.

关键词: polyethylene pipe     nuclear power plant     ultrasonic inspection     nondestructive testing     safety assessment    

Discontinuous mechanical behaviors of existing shield tunnel with stiffness reduction at longitudinal joints

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 37-52 doi: 10.1007/s11709-022-0920-3

摘要: An analytical model is proposed to estimate the discontinuous mechanical behavior of an existing shield tunnel above a new tunnel. The existing shield tunnel is regarded as a Timoshenko beam with longitudinal joints. The opening and relative dislocation of the longitudinal joints can be calculated using Dirac delta functions. Compared with other approaches, our method yields results that are consistent with centrifugation test data. The effects of the stiffness reduction at the longitudinal joints (α and β), the shearing stiffness of the Timoshenko beam GA, and different additional pressure profiles on the responses of the shield tunnel are investigated. The results indicate that our proposed method is suitable for simulating the discontinuous mechanical behaviors of existing shield tunnels with longitudinal joints. The deformation and internal forces decrease as α, β, and GA increase. The bending moment and shear force are discontinuous despite slight discontinuities in the deflection, opening, and dislocation. The deflection curve is consistent with the additional pressure profile. Extensive opening, dislocation, and internal forces are induced at the location of mutation pressures. In addition, the joints allow rigid structures to behave flexibly in general, as well as allow flexible structures to exhibit locally rigid characteristics. Owing to the discontinuous characteristics, the internal forces and their abrupt changes at vulnerable sections must be monitored to ensure the structural safety of existing shield tunnels.

关键词: tunnel–soil interaction     discontinuous analysis     longitudinal joints     existing shield tunnel     Timoshenko beam     Dirac delta function    

Seismic behavior experimental study of frame joints with special-shaped column and dispersed steel bar

Shuchun LI, Bo DIAO, Youpo SU,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 378-383 doi: 10.1007/s11709-009-0064-8

摘要: To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column, mechanical performance of three groups of six RC flame joints with special-shaped (L, T and+) column and dispersed-steel bars-beam on the top floor under cyclic loads were studied. Experimental comparison was conducted between special-shaped (L, T and+) column and normal beams. The cracking load, yielding load, ultimate bearing capacity, failure patterns, and hysteretic properties at joint core area were investigated. The seismic behaviors of the joints with different proportions of dispersed-steel-bar beams were analyzed. The results of experimental analysis indicate that the mechanical and seismic behaviors of frame joints with T-shaped and+-shaped column are nearly not changed when suitable proportion steel bars are dispersed to flange plane. Stiffness degeneration of flame joint with L-shaped column is rather serious due to concrete damage stiffness. Theoretical result indicates that distributing area of the dispersed steel-bar beams in the flange plate should be strictly controlled to avoid anchor destroy.

关键词: beam with dispersed steel bar     flame joints with special-shaped beam and column     seismic behavior     scale of dispersed steel bars    

Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1606-3

摘要:

● Reducting the sampling frequency can enhance the modelling process.

关键词: HDPE     Pyrolysis     Kinetics     Thermogravimetric     ANOVA     Artificial neural network    

Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2074-2087 doi: 10.1007/s11705-023-2342-8

摘要: In this study, the rheological properties, crystallization and foaming behavior of poly(lactic acid) with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer. Polyamide 6 particles were deformed into nanofibrils during drawing. For the 10% polyamide 6 case, polyethylene glycol addition reduced the polyamide 6 fibril diameter from 365.53 to 254.63 nm, owing to the smaller polyamide 6 particle size and enhanced interface adhesion. Rheological experiments revealed that the viscosity and storage modulus of the composites were increased, which was associated with the three-dimensional entangled network of polyamide 6 nanofibrils. The presence of higher aspect ratio polyamide 6 nanofibrils substantially enhanced the melt strength of the composites. The isothermal crystallization kinetics results suggested that the polyamide 6 nanofibrils and polyethylene glycol had a synergistic effect on accelerating poly(lactic acid) crystallization. With the polyethylene glycol, the crystallization half-time reduced from 103.6 to 62.2 s. Batch foaming results indicated that owing to higher cell nucleation efficiency, the existence of polyamide 6 nanofibrils led to a higher cell density and lower expansion ratio. Furthermore, the poly(lactic acid)/polyamide 6 foams exhibited a higher cell density and expansion ratio than that of the foams without polyethylene glycol.

关键词: poly(lactic acid)     foaming     microfibrillation     rheological property     crystallization    

Experimental and numerical analysis of beam to column joints in steel structures

Gholamreza ABDOLLAHZADEH, Seyed Mostafa SHABANIAN

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 642-661 doi: 10.1007/s11709-017-0457-z

摘要: The behaviors such as extreme non-elastic response, constant changes in roughness and resistance, as well as formability under extreme loads such as earthquakes are the primary challenges in the modeling of beam-to-column connections. In this research, two modeling methods including mechanical and neural network methods have been presented in order to model the complex hysteresis behavior of beam-to-column connections with flange plate. First, the component-based mechanical model will be introduced in which every source of transformation has been shown only with geometrical and material properties. This is followed by the investigation of a neural network method for direct extraction of information out of experimental data. For the validation of behavioral curves as well as training of the neural network, the experiments were carried out on samples with real dimensions of beam-to-column connections with flange plate in the laboratory. At the end, the combinational modeling framework is presented. The comparisons reveal that the combinational modeling is able to display the complex narrowed hysteresis behavior of the beam-to-column connections with flange plate. This model has also been successfully employed for the prediction of the behavior of a newly designed connection.

关键词: beam to column connections     experiments     component method     neural network model     combinational modeling    

Weakening behavior of waterproof performance in joints of shield tunnels under adjacent constructions

《结构与土木工程前沿(英文)》   页码 884-900 doi: 10.1007/s11709-022-0912-3

摘要: Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian–Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance.

关键词: shield tunnel     waterproof performance     horizontal transverse deformation     joint opening     weakening behavior    

Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)

Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1096-5

摘要:

PE ball milling pretreatment induces higher H2 production and purity by gasification.

Ca(OH)2 reacts at solid state with PE boosting H2 and capturing CO2.

Ca(OH)2 significantly reduces methanation side-reaction.

关键词: Hydrogen production     Gasification     Plastic waste     High energy ball milling    

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties

Necat ÖZAŞIK; Özgür EREN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 792-802 doi: 10.1007/s11709-022-0849-6

摘要: Polyethylene terephthalate bottles production has drastically increased year after year due to high versatility of polyethylene terephthalate plastics and considerable consumption of beverages. In tandem with that increase, the major concern of society has been the improper disposal of this non-biodegradable material to the environment. To deal with this concern, recycled polyethylene terephthalate bottles were incorporated in concrete as fibre reinforcements in this study. The objective of this research is to evaluate the mechanical properties of recycled polyethylene terephthalate fibre reinforced concrete (RPFRC) in comparison with control concrete without fibres. polyethylene terephthalate fibres with three different diameters (0.45, 0.65, and 1.0 mm) and two lengths (20 and 30 mm) were added at various proportions (0.5%, 1.0%, 1.5% and 2.0%) by volume of concrete in order to determine the effect of fibres initially on compressive, flexural and splitting tensile strengths of concrete. The results revealed that none of the fibres have detrimental effects up to 1% volume fraction, however further addition caused slight reductions on mechanical properties in some conditions. Plastic shrinkage resistance and impact resistance tests were also performed according to related standards. Polyethylene terephthalate fibres were observed to have marked improvements on those properties. Such a good performance could be attributed primarily to the bridging effect of fibres.

关键词: recycled PET     fibre-reinforced concrete     mechanical properties     plastic shrinkage     impact energy    

标题 作者 时间 类型 操作

Investigating peak stresses in fitting and repair patches of buried polyethylene gas pipes

Reza KHADEMI ZAHEDI, Pouyan ALIMOURI, Hooman KHADEMI ZAHEDI, Mohammad SHISHESAZ

期刊论文

Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites

期刊论文

聚乙烯类废塑料制聚乙烯蜡技术进展

王璇,冀星,李术元

期刊论文

Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption

Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour

期刊论文

Conceptual design of compliant translational joints for high-precision applications

Guangbo HAO,Haiyang LI,Xiuyun HE,Xianwen KONG

期刊论文

terephthalate)/ethylene propylene diene monomer copolymer grafted with maleic anhydride/metallocene polyethylene

RUN Mingtao, SONG Hongzan, WANG Yingjin, YAO Chenguang, GAO Jungang

期刊论文

A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

Jinyang ZHENG, Yue ZHANG, Dongsheng HOU, Yinkang QIN, Weican GUO, Chuck ZHANG, Jianfeng SHI

期刊论文

Discontinuous mechanical behaviors of existing shield tunnel with stiffness reduction at longitudinal joints

期刊论文

Seismic behavior experimental study of frame joints with special-shaped column and dispersed steel bar

Shuchun LI, Bo DIAO, Youpo SU,

期刊论文

Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric

期刊论文

Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing

期刊论文

Experimental and numerical analysis of beam to column joints in steel structures

Gholamreza ABDOLLAHZADEH, Seyed Mostafa SHABANIAN

期刊论文

Weakening behavior of waterproof performance in joints of shield tunnels under adjacent constructions

期刊论文

Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)

Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu

期刊论文

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties

Necat ÖZAŞIK; Özgür EREN

期刊论文